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Abstract

End-stage liver disease (ESLD) is characterized by a dramatic
deterioration of liver function, frequently accompanied by
systemic inflammatory storms and multiple organ failures.
Central to the onset and progression of ESLD, systemic in-
flammation arises from complex interactions among various
inflammatory signaling molecules and immune cells within
and beyond the liver. As key inflammatory modulatory mol-
ecules, bioactive oxylipins have been increasingly recognized
for their complex molecular mechanisms implicated in vari-
ous diseases. This review aims to summarize recent findings
regarding the molecular and immunological mechanisms
through which oxylipins contribute to the development of liver
injury and failure, with emphasis on both substantial intrahe-
patic and extrahepatic immune and inflammatory dysregula-
tion associated with ESLD. Furthermore, this review discusses
the translational potential of targeting oxylipins for clinical di-
agnosis, prognosis, and therapeutic intervention in ESLD.
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Introduction

The high mortality of end-stage liver disease (ESLD) is a
global public health problem.! The exact pathophysiological
mechanism remains elusive, involving a multitude of com-
plex processes, including immune dysregulation and persis-
tent inflammation, which further contribute not only to an
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increased risk of infection but also to a poor prognosis.2:3
Inflammation plays a pivotal role in ESLD progression. It trig-
gers the activation of immune cells, such as Kupffer cells
(KCs), natural killer cells, and T lymphocytes,*> leading to
the release of cytokines, such as tumor necrosis factor a
(TNF-a), monocyte chemoattractant protein-1 (MCP-1), in-
terleukins, and CXC motif chemokine ligand 12, as well as
other inflammatory mediators, such as lipid metabolites de-
rived from fatty acids.®” These bioactive lipids are potent
inflammation regulators and thus play critical roles in the
pathogenesis of ESLD.

There are various types of bioactive lipids, including poly-
unsaturated fatty acids (PUFAs), lysoglycerophospholipids,
sphingolipids, phytosterols, carotenoids, phenolic lipids, and
endocannabinoids, etc., and their generation and metabolism
exhibit considerable complexity.8:° These widely distributed
lipids have multiple functions in the liver and play a crucial
role in the regulation of hepatic signal transduction and me-
tabolism. They regulate biological processes such as cell pro-
liferation, differentiation, and apoptosis by binding to recep-
tors on a wide range of hepatic cell subpopulations. Among
these lipid mediators, oxylipins, which are oxygenated de-
rivatives of PUFAs, are drawing increasing attention for their
ability to orchestrate immune cell behavior and modulate in-
flammatory processes and immune responses.10

Recent studies have provided mounting evidence that ox-
ylipins play important roles in the acute and chronic phases
of liver diseases. During the acute phase of liver injury, eicos-
anoids are produced to induce pro-inflammatory responses
and provide mitogenic signals to promote liver regeneration.
Subsequently, pro-resolving oxylipins are produced to resolve
inflammation, support tissue repair, and restore hepatic ho-
meostasis.10 In contrast, sustained injury is characterized by
persistent eicosanoid-driven inflammation, notably through
abnormal polarization of M2 macrophages, concurrently with
diminished pro-resolving lipids. This deficiency in pro-resolv-
ing lipids leads to reduced phagocytosis, trapping the liver
in a state of damaging chronic inflammation that ultimately
promotes disease progression.10 Ultimately, in progression
to liver failure, a universal elevation of pro-inflammatory ei-
cosanoids persists without timely resolution, compounded
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by deficiency of pro-resolving lipids. This failure to resolve
inflammation perpetuates hepatocyte damage and activates
the circulating immune compartment, leading to severe sys-
temic inflammation, multi-organ failure, and death.1!
Therefore, bioactive oxylipins hold potential as therapeutic
targets for liver diseases, particularly offering a promising
approach to improve the prognosis of ESLD through modu-
lation of lipid-mediated inflammatory signaling. This review
aims to summarize the sources of bioactive oxylipins and
their roles under various immune conditions, and to discuss
the molecular and immunological mechanisms through which
bioactive oxylipins contribute to the onset and progression
of liver injury and failure, such as decompensated cirrhosis
(DC) and acute-on-chronic liver failure (ACLF). Ultimately,
we seek to provide insights that may inform future strate-
gies for the prevention and treatment of ESLD based on the
modulatory roles of oxylipins in inflammatory responses.

The types and sources of bioactive oxylipins

The n-6 PUFA (i.e., w-6 PUFA) family of linoleic acid (18:2
n-6, LA), gamma-linolenic acid (18:3 n-6, y-LNA) and ara-
chidonic acid (20:4 n-6, AA), as well as the n-3 PUFA (i.e.,
w-3 PUFA) family of alpha-linolenic acid (18:3 n-3, a-LNA),
eicosapentaenoic acid (20:5 n-3, EPA), docosapentaenoic
acid (22:5 n-3, DPA) and docosahexaenoic acid (22:6 n-3,
DHA), serve as substrates for various oxidases to produce
bioactive oxylipins, which mediate inflammatory responses.!2
The process of PUFA oxidation involves three major enzy-
matic pathways, namely cyclooxygenase (COX), lipoxyge-
nase (LOX), and cytochrome P450 (CYP450) pathways. Each
pathway comprises multiple enzymes that produce several
bioactive lipids (Fig. 1A). The COX enzymes, such as COX-
1 and COX-2, convert PUFAs into prostaglandins (PGs; e.g.,
PG-D/E/F/G/H/I) and thromboxane A2 (TXA,).1314 Notably,
COX-1 is constitutively expressed in most cells, serving as the
primary source of prostanoids that fulfill essential housekeep-
ing functions.®13 In contrast, COX-2 is induced by inflamma-
tory stimuli, hormones, and growth factors, and is generally
regarded as the primary source of prostanoids in inflamma-
tory and proliferative diseases.®13:15 On the other hand, LOX
enzymes, including 5-LOX, 12-LOX, 15-LOX, and LOXE3,
produce leukotrienes (LTs; e.g., LTA/B/C/D/E) and hydrox-
yeicosatetraenoic acids (HETEs; e.g., 5/8/12/15-HETE).16-19
Among them, 5-LOX is considered to be the primary con-
tributor to LT production, and it is predominantly expressed
by myeloid cells, including polymorphonuclear leukocytes
(PMNs), B lymphocytes, monocytes, macrophages, dendrit-
ic cells, and mast cells.?0 Furthermore, these LOX enzymes
also synthesize anti-inflammatory mediators such as lipoxins
(LXs) and specialized pro-resolving mediators (SPMs), includ-
ing resolvins (Rvs), protectins, and maresins (MaRs).21:22
The third oxidase family, CYP450 enzymes, is expressed
primarily in organs such as the liver, kidney, brain, heart, and
lung but is expressed relatively lowly in circulating cells.23.24
Within the CYP450 superfamily, a subset of CYP2 isoforms
is mainly responsible for epoxygenation.2> For example,
epoxyeicosatrienoic acids (EETs), including 5,6-EET, 8,9-EET,
11,12-EET, and 14,15-EET, are produced from AA by the ac-
tion of CYP2C and CYP2J. In parallel, epoxyeicosatetraenoic
acids (EETs or EpETEs) are produced from EPA.25 These EET
metabolites are then further metabolized to dihydroxyei-
cosaprienoic acids by soluble epoxide hydrolases.2¢ Another
group of CYP enzymes, the CYP4s with w-hydroxylase ac-
tivity, convert AA to HETEs, including 16-HETE, 17-HETE,
18-HETE, 19-HETE, and 20-HETE. They also convert EPA to
hydroxyeicosapentaenoic acids (HEPEs). Additionally, micro-
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somal CYP enzymes react with AA to produce HETEs. Many
of these lipid derivatives are unstable and undergo rapid
conversion to other products through enzymatic and non-
enzymatic actions.27:28 Ongoing investigations are unraveling
the diverse biological functions mediated by these lipid de-
rivatives, with an expanding collection of structurally distinct
species being systematically characterized.

Oxylipins are generated by various types of cells, includ-
ing immune cells such as macrophages and neutrophils, as
well as endothelial cells and adipocytes. Among these, SPMs
are mainly produced via transcellular biosynthesis, with M2
macrophages and PMNs acting as key participants.?® Leu-
kotrienes are mainly biosynthesized by leukocytes from
myeloblastic (neutrophils, eosinophils, and mast cells) and
monoblastic lineages (monocytes and macrophages).20,30
Anti-inflammatory LXs are formed by transcellular biosyn-
thesis via multiple collaborating pathways in leukocytes (in-
cluding eosinophils and monocytes), platelets, and epithelial
cells.’821,29 Rys are produced through the interactions of
COX-2 and LOX activities in endothelial cells, leukocytes (in-
cluding PMNs), and glial cells.31-34 The differential expression
of COX within inflammatory cells determines the production
of different prostanoids, such as PGD, by mast cells and PGE,
and TXA, by macrophages.3> In addition, EETs are produced
in the liver at biologically relevant levels and are also detect-
ed in the vasculature and cardiomyocytes.® In summary, the
complexity of oxylipin biosynthesis arises from the dynamic
interplay between diverse cell types and their microenviron-
ment, where transcellular metabolism and spatial enzyme
distribution collectively dictate the spectrum of bioactive lipid
mediators and thus their functions in regulating inflamma-
tion, immune response, and tissue repair.

The modulatory roles of oxylipins in inflammatory
responses

Classical eicosanoid metabolites, including PGs, LTs, and TXs,
have been well-studied as inflammatory mediators. Gener-
ally, AA-derived pro-inflammatory 2-series PGs, 4-series LTs,
and related lipid mediators exhibit substantially higher pro-
inflammatory potency, whereas EPA-derived 3-series PGs,
3-series TXs, and 5-series LTs exert attenuated inflamma-
tory bioactivity relative to their AA-derived homologs.8:10,19
Despite their low physiological concentrations in the body,
these eicosanoids exhibit profound biological activity: they
can modulate cellular functions by binding to specific recep-
tors, triggering signal transduction pathways within a short
timeframe to elicit significant physiological effects. Among
these, TXs promote hepatic microvascular constriction and
stimulate the release of pro-inflammatory cytokines, caus-
ing platelet aggregation and leukocyte recruitment.10.36,37
Prostaglandins, particularly PGE, and PGI,, act as cytokine
amplifiers and drive the switch between acute and chronic in-
flammation through multiple mechanisms, including enhanc-
ing cytokine release, intensifying innate immune responses
to pathogen- and damage-associated patterns (PAMPs and
DAMPs), differentiating immune cells into pro-inflammatory
subsets, recruiting T helper cells, and increasing the expres-
sion of cytokine-induced pro-inflammatory genes.11,38,39
Leukotrienes, such as LTB,, can recruit leukocytes (espe-
cially neutrophils and macrophages) to sites of inflamma-
tory or immune responses and induce these cells to produce
pro-inflammatory cytokines, including TNF-a and interleu-
kins (IL-1B/-6/-8).40 On the other hand, LTB, also appears
to promote immune defenses by modulating the functions
of T lymphocytes (increasing proliferation and production of
IL-2 and interferon-y, suggesting enhanced Th1l cell activ-
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Biosynthesis, Cellular Targets, and Functional Roles of Oxylipins in Liver Injury
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Fig. 1. Biosynthesis, cellular targets, and functional roles of oxylipins in liver injury. (A) Oxylipins are mainly synthesized via cyclooxygenase (COX), lipoxy-
genase (LOX), and cytochrome P450 (CYP450) pathways. Key pro-inflammatory oxylipins (red) and pro-resolving oxylipins (green) are highlighted. (B) Each oxylipin
acts on liver cells through its corresponding receptors and signaling pathways. (C) Pro-inflammatory oxylipins promote liver injury by inducing the recruitment of im-
mune cells, amplifying pro-inflammatory signaling, activating quiescent HSCs into collagen-secreting myofibroblasts, and triggering hepatocyte apoptosis. Pro-resolving
oxylipins counteract these pathological processes by promoting inflammation resolution, driving macrophage polarization toward the anti-inflammatory M2 phenotype,
facilitating fibrosis regression, and enhancing hepatic tissue repair, ultimately supporting the recovery of normal liver function. Figure created with BioRender. TXA,,
thromboxane A,; PGE,, prostaglandin E,; PGIL,, prostaglandin I,; LXA,, lipoxin A,; LTB,, leukotriene B,; HETEs, hydroxyeicosatetraenoic acids; EETs, epoxyeicosatrie-
noic acids; HSC, hepatic stellate cell; TP, thromboxane receptor; EP, prostaglandin E receptor; IP, prostaglandin I receptor; BLT, leukotriene B receptor; FPR, N-formyl
peptide receptor; GPR, G-protein-coupled receptor.
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ity), B lymphocytes (promoting differentiation and increasing
immunoglobulin E production), and natural killer cells (aug-
menting cytotoxicity).40

The functions of non-classical eicosanoid metabolites,
such as EETs and HETEs generated from AA, are less well un-
derstood, and warrant further investigation. Recent findings
indicate that 20-HETE can stimulate endothelial cells to re-
lease inflammatory IL-4, IL-8, and IL-13.4! Adipocytes chal-
lenged by 12/15-LOX produced 12-HPETE and 12(S)-HETE
and also augmented the expression of pro-inflammatory
cytokines such as TNF-a, MCP-1, IL-6, and IL-12p40.42 In-
terestingly, 5-HETE derived from AA can either be metabo-
lized to inflammatory LTs by 5-LOX,43 or, conversely, be con-
verted into anti-inflammatory LXs and their derivatives by
12-LOX. LXs have been shown to exert anti-inflammatory
effects by enhancing macrophage-mediated clearance of ap-
optotic neutrophils, thereby promoting the resolution of in-
flammation.4#4> Moreover, EETs produced by CYP2 enzymes
also have anti-inflammatory effects, which can reduce the
expression of vascular cell adhesion molecule in endothelial
cells and inhibit the secretion of cytokines by macrophages.4®

It has been demonstrated that AA-derived HETEs, EPA-de-
rived HEPEs, and DHA-derived hydroxyeicosahexaenoic ac-
ids (HDHAs), as intermediate precursors in SPM biosynthet-
ic pathways, can be further converted into bioactive SPMs
with anti-inflammatory and pro-resolving functions.#” These
SPMs include LXs (e.g., EPA-derived LXA;, AA-derived LXA,
and LXB,), Rvs (RvDs and RVEs), MaRs, and neuroprotectin
D1).10 By binding to specific receptors, these SPMs activate
or inhibit intracellular signaling pathways, not only reducing
excessive inflammatory responses but also actively driving
the resolution of inflammation (e.g., enhancing efferocytosis
and promoting tissue repair) to facilitate tissue homeostasis
restoration.1!

Oxylipins typically bind to and activate specific members
of the G protein-coupled receptor (GPCR) family. The diver-
sity of GPRs allows oxylipins to target signaling pathway ac-
tivation based on distinct receptor combinations, resulting in
diverse cellular functions. Taking PGE, binding to prostanoid
E receptors (EPs; EP1-EP4) as an example, EP1 and EP2 re-
quire higher concentrations of PGE, to initiate signaling cas-
cades, whereas EP3 and EP4 can be stimulated at lower li-
gand concentrations.*® Stimulation of EP2 and EP4 receptors
leads to the activation of ERK1/2, AKT, NF-kB, and B-catenin
signaling pathways, ultimately enhancing cell survival and
migration.*® Most splice variants of EP3 function as Gi-cou-
pled receptors that inhibit adenylate cyclase and modulate
anti-inflammatory responses, while EP1-mediated signaling
involves the stimulation of intracellular calcium.3% Addition-
ally, Rvs (including RvD and RVE), MaRs, and LXA, share the
same receptor ALXR (also known as N-formyl peptide recep-
tor 2, FPR2), while EETs and HETEs interact with GPCRs such
as GPR75, GPR40, and GPR120.51-55 These interactions high-
light the complex and specific roles of oxylipins in regulating
inflammatory responses and cellular functions, as summa-
rized in Figure 1B and C. For more extensive coverage of the
regulatory functions of oxylipins, see Chiurchil’s and Calder’s
comprehensive review.39:40

Oxylipins and key associated lipids in liver injury and
liver failure

Recent studies have documented altered oxylipid signatures
in patients with liver cirrhosis or ACLF.>%-58 The study based
on the European CANONIC Cohort of ESLD observed a gen-
eralized suppression of lipids in cirrhosis patients, with sphin-
gomyelin being linked to the acute decompensation (AD)
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stage and cholesteryl esters and lysophosphatidylcholine
(LPC) correlated with ACLF pathogenesis.>® Another study of
the European CANONIC Cohort identified 16 plasma oxylipins
significantly associated with cirrhotic status.>® Within these
compounds, LTE, and 12-hydroxyheptadecatrienoic acid (12-
HHT) can be used to identify ACLF patients, while LTE, levels
correlate with ACLF severity and inflammation markers. Fur-
thermore, the combination of LTE,, LXA;, and 12,13-epoxy-
9-keto-10(trans)octadecenoic acid (EKODE) was linked to
short-term mortality in ACLF patients.5° Furthermore, albu-
min from patients with AD exhibited lower content of PUFAs
and PGE,, as well as lower levels of monohydroxy FA precur-
sors of anti-inflammatory/pro-resolving lipid mediators, such
as 15-HETE, compared to healthy subjects.0 These studies
clearly show that the pathogenesis of ACLF or cirrhosis is
closely associated with complex lipidomic modulation, re-
vealing a complex interplay between lipid metabolism and
disease progression.

Additionally, some studies investigated lipidomic modula-
tion in patients with hepatitis B virus (HBV) infection, which
significantly contributed to DC and ACLF in China and other
Asian countries. Patients with HBV-ACLF exhibited increased
levels of pro-inflammatory n-6 PUFA derivatives, including
8,9-EET, PGD,,, PGJ,, 11B-PGF,, 11B-PGE,, LTB,, LTD,,
LTF,, 11-trans-LTE,, TXB,,  alongside various HETE com-
pounds (5/8/9/11/12/15-HETE). Consistently, elevated
EPA-derived metabolites (such as RvEl and 5/8/9/12/15-
HEPE) and DHA-derived metabolites (such as protectin D1,
RvD1/3/5, and 4/8/10/11/13/14/16/17/20-HDHA) were also
observed in HBV-ACLF patients compared to HBV-DC pa-
tients.®! Furthermore, a recent study demonstrated a signifi-
cant increase in eicosanoid production in HBV-ACLF patients,
including 9-hydroxyoctadecadienoic acid (9-HODE), 13-
HODE, 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME),
and 9,10-DiHOME.®2 In patients with HBV-related hepatocel-
lular carcinoma (HCC), eight LA-derived and AA-derived ei-
cosanoids were found to be significantly elevated, of which
9- and 13-HODE in particular have shown potential as HCC
biomarkers.®3 In another study to portray oxylipin profiles
related to chronic HBV infection progression, the authors
observed increased levels of CYP450-derived 9,10-DiHOME,
12,13-DiHOME, and 14,15-dihydroxyeicosatrienoic acid in
HBV-related liver cirrhosis and HCC patients.®* In addition to
their potential as HBV-related ESLD markers, a recent clinical
trial revealed that removing pro-inflammatory eicosanoids
by hemoperfusion adsorption was associated with favorable
outcomes in ACLF patients.®>

Scientists also found that patients with alcohol-relat-
ed liver disease (ALD) or non-alcoholic fatty liver disease
(NAFLD) had different oxylipin profiles.6¢ A 2022 cohort
study revealed that severe NAFLD patients exhibited signifi-
cantly elevated plasma levels of specific oxylipins, including
both pro-inflammatory PGF,, and pro-resolving LXB, and
MaR-1.67 The authors found that serum oxylipins, including
8,9-dihydroxyeicosatrienoic acid, 4-hydroxydocosahexaenoic
acid, 14-hydroxydocosahexaenoic acid, LXA,, and 12S-HETE,
were decreased in alcoholic hepatitis patients compared to
those with alcohol use disorder.68 Of particular interest, el-
evated 20-HETE levels were associated with increased he-
patic steatosis, polymorphonuclear neutrophil infiltration, as
well as higher 90-day mortality in patients with ALD.%8 An-
other study reported that 13-HODE was markedly elevated
in patients with moderate alcoholic hepatitis, distinguishing it
from mild alcohol-associated liver injury.®® Collectively, these
studies highlighted the potential of oxylipins as dynamic bio-
markers, not only for tracking ALD/NAFLD progression but
also for distinguishing disease severity and subtypes.
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Fig. 2. Dynamic changes of oxylipins and therapeutic opportunities during liver disease progression. (A) As liver pathology advances from chronic inflam-
mation to cirrhosis, acute-on-chronic liver failure, or hepatocellular carcinoma, a general trend characterized by elevated levels of pro-inflammatory oxylipins (e.g.,
20-HETE, TXA,, PGE,) and reduced abundance of pro-resolving oxylipins (e.g., RvD1, RvE1) is observed. These dynamic shifts highlight the potential of oxylipins as
biomarkers for tracking disease severity and as therapeutic targets. (B) Targeting oxylipin metabolism and homeostasis, therapeutic strategies for liver diseases may
be constructed as follows: prophylactic approaches prioritize maintaining oxylipin balance via w-3 PUFA supplementation to enrich pro-resolving oxylipin precursors and
modulate healthy gut microbiota; interventions against fibrosis and chronic inflammation focus on restoring the pro-inflammatory/pro-resolving oxylipin equilibrium by
using sEH inhibitors to elevate EET levels, using exogenous pro-resolving lipid analogs and receptor antagonists; and management of inflammatory storms relies on
mitigating excessive pro-inflammatory oxylipin activity by using COX-2/5-LOX inhibitors, pro-resolving lipid analogue therapy, hemadsorption to clear pro-inflammatory
mediators, and albumin infusion to sequester pro-inflammatory PGE,. Figure created with BioRender. HSCs, hepatic stellate cells; PGE,, prostaglandin E,; LTB,, leu-
kotriene B,; LXA,, lipoxin A,; RvD1, resolvin D1; 20-HETE, 20-hydroxyeicosatetraenoic acid; TXA,, thromboxane A,; 12-HETE, 12-hydroxyeicosatetraenoic acid; RVE1,
resolvin E1; PUFAs, polyunsaturated fatty acids; EETs, epoxyeicosatrienoic acids; TP, thromboxane receptor; COX-2, cyclooxygenase-2; 5-LOX, 5-lipoxygenase.

Liver disease-specific lipid signatures can also be found samples from the European CANONIC Cohort of ESLD pa-
in circulating extracellular vesicles (EVs). For instance, low tients, Chinese HBV-related ACLF patients (or patients from
levels of circulating EVs were found in patients with cirrhosis, other Asian countries), as well as individuals with ALD or
regardless of severity, and altered EV lipid content showed NAFLD, demonstrate that oxylipins exhibit considerable clini-
considerable correlation with disease status.’® Specialized cal diagnostic potential as etiology-specific, stage-sensitive,
lipid mediators from EVs, including 18-HEPE, RvEs, RvDs, and prognosis-associated biomarkers. Across geographically
and MaRs, were lower in ACLF patients than in AD patients diverse populations and heterogeneous etiologies, these
without ACLF. In AD, levels of EV-harbored RVE1 correlated oxylipin signatures exhibit consistent associations with dis-
closely with CD5L levels. Moreover, functional studies in mac- ease progression, organ dysfunction, and clinical outcomes,
rophages indicated a positive feedback loop between CD5L underscoring their robustness as universal diagnostic tools.
and RvE1l biosynthesis that orchestrated the resolution of Collectively, these findings validate the significant clinical
inflammation. This study suggested that the dramatic altera- diagnostic utility of oxylipins and support their potential in-
tion of circulating EV contents along with loss of anti-inflam- tegration into routine clinical practice to enhance diagnostic
matory molecules was closely related to disease progression precision, optimize risk stratification, and guide the person-
during the development of AD-ACLF.79 The oxylipin markers alized management of patients with liver injury and liver
associated with ESLD progression were visualized in Figure failure. Nevertheless, the clinical application of oxylipins in
2A, and their potential diagnostic implications have been ESLD diagnosis remains hampered by several challenges,
summarized in Table 1.58-65,67-70 including insufficient granularity in disease subgroup strati-

Collectively, the oxidative lipidomic analyses of clinical fication in current studies and limitations in analytical meth-
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odologies (see detailed discussions in the Future Prospects
section).

Mechanism of oxylipins involved in liver injury and
liver failure

The pro-inflammatory role of COX-2 and its major oxylipin
products in liver injury has been extensively studied. During
acute liver injury, the upregulation of COX-2 expression leads
to the production of PGs and TXs, which can exacerbate in-
flammation and hepatocyte damage.’t-74 Conversely, inhibi-
tion of COX-2 can protect the liver from ischemia-reperfusion
(I/R) injury by reducing neutrophil infiltration.”>-77 Further-
more, several studies have shown that COX-2 is highly ex-
pressed in activated hepatic stellate cells (HSCs, a central
cell type driving liver fibrosis),”879 and it modulates MCP-1
expression via the prostaglandin-cAMP pathway, thereby en-
hancing the pro-inflammatory potential of HSCs.80 Consist-
ently, COX-2 induction and increased PGE, production are
found to be closely associated with platelet-derived growth
factor-stimulated proliferation and migration of HSCs.81:82
Conversely, celecoxib-mediated COX-2 inhibition alleviates
liver cirrhosis in thioacetamide (TAA) rat models by attenu-
ating the COX-2/PGE,/EP2/p-ERK signaling, which enhances
intestinal epithelial barrier function by upregulating ZO-1
and E-cadherin, blocks inflammatory transport through the
gut-liver axis, and ameliorates the progression of liver fibro-
sis.83 In a lipopolysaccharide (LPS)/galactosamine-induced
acute liver injury model, the reduction of PGE, levels medi-
ated by the targeted expression of 15-hydroxyprostaglandin
dehydrogenase diminished hepatocyte death.8* A Chinese
hepatitis B cohort study found that plasma PGE, levels were
higher in ACLF patients, and these elevated PGE, levels were
closely associated with systemic inflammation and disease
severity.85 Elevated concentrations of PGE, have also been
observed in patients with AD.8 In vitro experiments dem-
onstrated that plasma from patients with AD and ESLD sup-
pressed macrophage pro-inflammatory cytokine secretion
and bacterial killing in a PGE,-dependent manner, which was
mediated by EP2.86 Additionally, another investigation re-
vealed that monocyte dysfunction in patients with DC was
also mediated by PGE, via its EP4 pathway.8”

However, certain PGs exhibit a dual role in liver physiology.
While they can induce inflammation and aggravate liver inju-
ry, there is emerging evidence suggesting that they may also
possess hepatoprotective effects and facilitate hepatocyte
regeneration. Notably, in vitro studies have demonstrated
that COX-2-derived PGE, inhibits both basal and transform-
ing growth factor-p1-mediated collagen synthesis in HSCs, a
key mechanism mitigating fibrogenesis.88 Interestingly, de-
pletion of PGE, synthase (PGES) 1 in a mouse non-alcoholic
steatohepatitis (NASH) model leads to liver inflammation and
hepatocyte apoptosis, showing increased TNF-a release upon
LPS treatment.8 Consistently, studies also demonstrated
that knockout of COX-2 or administration of PGES inhibitors
aggravated acetaminophen-induced liver injury.”1°0 On the
other hand, it has been noted that PGE, exhibits hepato-
protective effects by inducing proliferation, which may be
mediated by receptor isoforms.91:92 For instance, neutrophil
accumulation was inhibited by EP4 (a subtype of PGE, re-
ceptor) agonist treatment, which significantly alleviated he-
patic I/R injury.”> PGE, has been shown to reduce fat deposi-
tion in mouse primary hepatocytes exposed to palmitic acid
(PA).93 Furthermore, methionine-choline-deficient diet-fed
mice lacking the PGI, receptor developed more severe pro-
gression of NASH, indicating that PGI, played a crucial role
in the development and progression of steatohepatitis by

modulating the inflammatory response.®* In conclusion, the
balance between these pro- and anti-inflammatory functions
of prostaglandins (particularly PGE,), as well as their effects
on cell growth and apoptosis, determines their role in the
progression of liver disease. A comprehensive understand-
ing of these intricate and delicate balances is crucial for the
development of effective therapeutic strategies against liver
diseases, including ACLF and others.

In addition to COX-2-derived lipids, oxylipins produced
by liver-enriched CYP450 also play crucial pathophysiologi-
cal roles. The most abundant CYP450-derived oxylipin is
20-HETE, which accounts for 50% to 70% of eicosanoids
produced in the liver.%> The pleiotropic effects of 20-HETE
encompass regulation of vascular tone, promotion of in-
flammatory response, and modulation of cell proliferation
and apoptosis. 20-HETE has been found to induce hepatic
fibrosis mainly via the transforming growth factor-g/Smad3
pathway.°® Moreover, a lipidomic analysis revealed that 20-
HETE was the predominant eicosanoid compound in cirrho-
sis patients, with levels even higher than those of PGs and
TXs, suggesting its potential significance in cirrhotic progres-
sion.®? Recent genome-wide association studies have linked
GPR75 variants to reduced risk of hepatic steatosis.98:99
Mechanistically, 20-HETE activates GPR75-dependent path-
ways, promoting vasoconstriction and hypertensive pheno-
types.>4:100,101 Collectively, these findings suggest that the
20-HETE-GPR75 axis may serve as a critical mediator in the
pathogenesis of liver fibrosis and portal hypertension. Future
investigations are warranted to determine the physiologi-
cal and pathological roles of hepatic 20-HETE, elucidate the
functional interplay between GPR75 and liver disease pro-
gression, and evaluate the therapeutic potential of targeting
this pathway in ESLD.

Higher expression of LOXs, including 5-LOX, 12-LOX, and
15-LOX, has been found in liver diseases.102-104 | Xs are gen-
erated from AA via biosynthetic pathways involving dual LOX
combinations either by 5/15-LOX or by 5/12-LOX, and have
been extensively studied preclinically for their anti-inflam-
matory effects or their roles in promoting resolution of in-
flammation.1%> LXA,, the major physiological LX form, could
promote apoptosis and inhibit proliferation, migration, and
angiogenesis of HepG2 hepatocarcinoma cells stimulated by
LPS or by macrophage-conditioned media.!%> However, LXA,
has also been demonstrated to be involved in the induction of
myeloid-derived suppressor cells after Treg depletion, which
tunes tumor-associated inflammation and promotes tumor
growth.106 A study revealed that 12-LOX-mediated 12-HETE
production was enhanced during I/R injury, and blockade of
this pathway ameliorated I/R-induced liver dysfunction, in-
flammation, and cell death.197 Moreover, activation of this
pathway is also enhanced in NAFLD, where 12-HETE induces
matrix metalloprotein expression by activating the PI3K/
AKT/NF-kB pathway, thus leading to epithelial-mesenchymal
transition and HCC recurrence in fatty liver more than in nor-
mal liver.193 LTB, and LTC, are inflammatory lipid mediators
derived from AA via 5-LOX oxidation, and they contribute to
liver fibrosis by activating the extracellular signal-regulated
protein kinase pathway in HSCs.192 Moreover, hepatic 15-
HETE production is disturbed in 3,5-diethoxycarbonyl-1,4-di-
hydrocollidine-treated mice, and reducing 15-HETE levels via
inhibiting 15-LOX results in apoptosis.108:109 Qverall, these
findings highlight the complex role of LOXs and relevant ox-
ylipins in liver disease. The balance between these metabo-
lites and their regulatory mechanisms is crucial for maintain-
ing liver health and preventing disease progression. Table 2
lists some oxylipins and their known pathways involved in
liver injury and liver failure.5468,71-77,80-83,85-94,96-103,105-109
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Table 2. Summary of oxylipin mechanisms in liver diseases
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Oxylipin(s) Enzyme(s) Liver diseases Mechanism of action References
PGs & TXs COX-2 Acute liver COX-2 upregulation leads to production of PGs and TXs, 71-77
injury exacerbating inflammation and hepatocyte damage; COX-2
Inhibition reduces neutrophil infiltration and I/R injury
PGs COX-2 Liver fibrosis COX-2 modulates MCP-1 expression via PG-cAMP pathway 80
PGE, COX-2/ ACLF, AD Elevated in AD and ACLF, associated with systemic 85-87
PGES1 inflammation; Suppresses macrophage proinflammatory
cytokine secretion and bacterial killing via receptor EP2;
Mediates monocyte dysfunction via receptor EP4
Liver fibrosis, Increased PGE, is associated with PDGF-stimulated 81-83,88
liver cirrhosis proliferation and migration of HSCs; PGE, inhibits both
basal and transforming TGF-B1-mediated collagen synthesis
in HSCs; Celecoxib-mediated COX-2 inhibition alleviates
liver cirrhosis via COX-2/PGE,/EP2/p-ERK signaling
NASH, APAP- Depletion leads to increased liver inflammation and 71,75,89-93
induced injury  apoptosis in NASH; Induces hepatocyte proliferation
via receptor isoforms; Reduces fat deposition
in hepatocytes; EP4 receptor agonist inhibits
neutrophil accumulation, alleviating I/R injury
PGI, COX-2 NASH Hepatoprotective; lack of its receptor leads to severe NASH 94
LXA, 5/15- or HCC Anti-tumorigenic, promotes apoptosis and inhibits 105,106
5/12-LOX proliferation, migration, and angiogenesis in
hepatocarcinoma cells; Pro-tumorigenic, induction
of MDSCs, which promotes tumor growth
LTB,, LTC, 5-LOX Liver fibrosis Contribute to liver fibrosis by activating 102
the ERK pathway in HSCs
12-HETE 12-LOX NAFLD/HCC 12-LOX blockade ameliorates I/R induced liver dysfunction, 103,107
inflammation, and cell death; In NAFLD, induces matrix
metalloproteinase expression via PI3K/AKT/NF-kB
pathway, leading to EMT and higher HCC recurrence
15-HETE 15-LOX Cholestatic Hepatoprotective; its reduction via 15-LOX 108,109
liver injury inhibition results in hepatocyte apoptosis
20-HETE CYP450 Liver fibrosis, Dominant eicosanoid in cirrhosis, induces hepatic fibrosis 54,68,96-

cirrhosis, ALD

via the TGF-B/Smad3 signaling; Promotes vasoconstriction 101

and hypertension via the GPR75 pathway; Enhances
hepatic steatosis and neutrophil infiltration in ALD

PG, prostaglandin; TX, thromboxane; COX-2, cyclooxygenase-2; I/R, ischemia-reperfusion; MCP-1, chemoattractant protein-1; PGES1, PGE, synthase 1; AD, acute
decompensation; ACLF, acute-on-chronic liver failure; PDGF, platelet-derived growth factor; HSC, hepatic stellate cells; TGF-B, transforming growth factor-B; EP, prosta-
glandin E receptor; NASH, non-alcoholic steatohepatitis; APAP, acetaminophen; LX, lipoxin; LOX, lipoxygenase; HCC, hepatocellular carcinoma; MDSC, myeloid-derived
suppressor cell; LT, leukotriene; NAFLD, non-alcoholic fatty liver disease; CYP450, cytochrome P450; ALD, alcohol-related liver disease; GPR, G protein-coupled receptor.

Interaction between oxylipins and liver immune cells

KCs, the resident macrophages in the liver, release PGs in re-
sponse to LPS stimulation.?4110,111 Compared to other mac-
rophage populations, KCs are particularly active in produc-
ing PGE,. The expressions of both COX-2 and PGES1 were
induced in KCs within 3 to 24 hours post-LPS treatment.!12
Moreover, KCs have also been confirmed as the primary
source of TXA,.113-115 The concentration of TXA, in the cul-
ture medium of KCs isolated from bile duct ligation (BDL)
mice was significantly higher than that from normal mice.”3
The TXA, produced by KCs binds to thromboxane prostanoid
(TP) receptors, which activates T cells and promotes immune
cell infiltration.16 Inhibiting the COX-2 activity of KCs results
in reduced hepatic production of TXA,,36:113.114 which subse-
quently leads to the production of LTB, and the 15-epimer of
LXA,.17 In addition, KCs from damaged livers, when treated
with phorbol ester or calcium ionophore, produce more LTs
than PGE,.!8 The enzyme 5-LOX is highly expressed in KCs
and HSCs.119 Researchers found that KCs utilized 12-/15-
LOX to produce LTs,120 and they also produced immunosup-

pressive HETEs and HDEAs via 15-LOX when exposed to
DAMP signals from apoptotic cells.12!

Treatment with inhibitors of 5-LOX and its activating pro-
tein FLAP affects KC morphology and apoptosis, leading to KC
depletion and reduction of liver inflammation.122:123 Inhibiting
LOX reduces the production of reactive oxygen species (ROS)
by macrophages in response to liver injury.12* Additionally,
blocking the LTB, receptor inhibits the expression of EGF,
VEGF, and VEGF receptors in macrophages and affects their
recruitment and I/R-induced liver injury.125 Furthermore,
PGE, and TXA, have been shown to regulate the function of
KCs. Specifically, PGE, was shown to inhibit IL-1, IL-6, and
ROS production by KCs in a dose-dependent manner.16:126,127
Deficiency of TP receptor (activated by TXA,) reduced pro-
inflammatory gene expression and cytokine secretion in KCs
stimulated by TNF-a, H,0,, or PA.128 Conversely, TXA, pro-
moted KC activation in a TP receptor-dependent manner,
thereby contributing to lipogenesis in primary hepatocytes
and the development of NAFLD.128

Bioactive oxylipins critically regulate KC polarization dur-
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ing liver disease progression. Cytokine-driven reprogram-
ming governs macrophage differentiation into pro-inflam-
matory (M1) or anti-inflammatory (M2) states, with KCs
predominantly adopting an M1 phenotype in injury con-
texts.129:130 Crucially, transition to the M2 phenotype enables
inflammation resolution and tissue regeneration—a process
orchestrated by SPMs.131.132 Notably, RvD1, a key member
of the RvD family, significantly attenuates the I/R-induced
changes in macrophages, inhibits the expression of IL-1p and
IL-6, alleviates the M1 polarization state of KCs during liver
injury, and promotes the resolution of inflammation.131,133
This regulatory effect of RvD1 depends on the presence of
KCs. Depletion of KCs using liposomal clodronate abolishes
its impact on pro-inflammatory mediators and macrophage
polarization.131,133 Similarly, MaR1 has been demonstrated
to enhance the expression and transcriptional activity of
retinoic acid-related orphan receptor a, which is considered
a key regulator of polarization in liver macrophages. This
consequently results in an increase in the M2 polarization of
KCs.134 However, conflicting evidence suggests that spleen-
and bone marrow-derived macrophages, rather than KCs,
may serve as the primary source of SPMs.135 Taken together,
these findings indicate that various oxylipins can modulate
macrophage function, with their effects intricately linked to
the cellular context and specific subsets of macrophages in-
volved.

Furthermore, while the interaction between oxylipins and
liver macrophages is well-documented, recent research has
also focused on the effects of oxylipins, particularly PGs,
on other cell subgroups such as HSCs, T cells, and neutro-
phils.105:106,127,136 For instance, PGE, is shown to dose-de-
pendently drive neutrophilic inflammation resolution in the
absence of macrophages in a zebrafish model.37 Research-
ers have demonstrated that PGE, can increase the immuno-
suppressive potential of Treg cells and convert CD4+CD25~
T cells into an immunosuppressive phenotype by inducing
FOXP3.136,138 Moreover, studies have shown that senescent
HSCs produce PGE, in NASH, which plays a pivotal role in
suppressing antitumor immunity.3° Concurrently, TXA, acts
on T cells to trigger an immunosuppressive pathway that is
dependent on the guanine exchange factor ARHGEF1, sup-
pressing T cell receptor-driven kinase signaling, proliferation,
and effector functions. This mechanism may create a permis-
sive microenvironment conducive to hepatic metastasis.140
Certain oxylipins exert their effects on liver cells through
their respective known receptors and signaling pathways,
with the corresponding functional outcomes illustrated in
Figure 1B and C.

Impact of gut microbiota on oxylipin metabolism

The gut microbiota has been shown to modify host oxylipin
metabolism, exerting a certain influence on inflammation
and metabolic homeostasis.!#! For instance, Bacteroides fra-
gilis has been shown to downregulate host pro-inflammato-
ry oxylipins such as 15-oxoETE while increasing AA levels,
which are associated with reduced hepatic lipid accumulation
and inflammation.142 While intestinal microbial imbalance is
a well-recognized contributor to the occurrence and progres-
sion of ESLD through metabolic disorders and PAMP-induced
inflammation, little is known about the potential impact on
host oxylipin metabolism. Some recent studies have investi-
gated the effect of gut microbiota dysbiosis on host oxylipin
pathways. For instance, gut microbiota dysbiosis induced by
antibiotics or obesogenic diets significantly altered plasma
oxylipin profiles in rats, with specific bacterial taxa like Pro-
teobacteria positively correlated with the pro-inflammatory

oxylipin LTB,, linking microbial imbalance to obesity-related
inflammation.143 Additionally, another study has shown that
translocation of the microbial metabolite lipoteichoic acid
may cause excess PGE, production via COX-2 activation,
thereby contributing to HCC progression.!39 Microbial lysates
from patients with spontaneous bacterial peritonitis signifi-
cantly enhance TXB, secretion in both human and mouse
KCs, highlighting a direct microbial influence on TX synthe-
sis.144 Collectively, these findings indicate that gut microbiota
may be a pivotal regulator of oxylipin-driven inflammatory
and metabolic processes. However, the causal relationships
and detailed mechanisms through which specific gut micro-
bial communities influence host oxylipin pathways remain
largely unexplored. Future studies are warranted to inves-
tigate how individual bacterial strains or consortia interact
with host enzymes (e.g., COX, LOX, and CYP450) to modu-
late oxylipin metabolism and to unravel the molecular links
between the microbiome and oxylipin-mediated immune
signaling in the progression of liver diseases. Such investi-
gations are expected to map potential networks across the
microbiota-oxylipin-liver axis, thereby facilitating the crea-
tion of a comprehensive mechanistic framework linking the
gut microbiota, oxylipins, and liver disease.

Bioactive oxylipins as potential therapeutic targets
in liver injury and liver failure

Bioactive oxylipins and their corresponding oxidases, COXs,
LOXs, and CYP450 enzymes, have been considered potential
therapeutic targets in the context of liver injury and liver
failure due to their involvement in the progression or res-
olution of liver disease (Fig. 2). Inhibition of enzymes and
their related metabolites has been shown to alleviate liver
inflammation and associated complications such as steatosis
and fibrosis. COX-derived PGE, plays a significant role in im-
munosuppression in AD patients, and its level is increased
in ACLF patients.86:145 Albumin binds to PGE, and reduces
its bioavailability, which in turn increases circulating TNF-a
levels, reduces monocyte anergy, thereby potentially lower-
ing infection risk.86 The COX-2 inhibitor JTE-522 has been
demonstrated to effectively reduce fibrogenesis in both rat
models of liver cirrhosis induced by a choline-deficient diet
and in a model of liver fibrosis induced by TAA.37:146 Addi-
tionally, other COX-2 inhibitors, including DFU, meloxicam,
and celecoxib, have individually demonstrated the ability to
decrease TAA-induced liver injury, reduce BDL-induced col-
lagen accumulation, and attenuate hepatic fibrosis and cir-
rhosis caused by BDL, CCl,, and TAA.147-151 Genetic ablation
or pharmacological inhibition of 5-LOX by targeted delivery
of the inhibitor zileuton improved CCl,- and methionine-cho-
line-deficient diet-induced hepatic fibrosis and liver injury.102
Furthermore, zileuton has been shown to reduce acetami-
nophen- and LPS-induced liver injury, delay disease progres-
sion in HFD-induced NAFLD, and inhibit tumor development
in diethylnitrosamine-induced HCC.152-155 Clinically, admin-
istration of meloxicam has been found to ameliorate hepatic
fibrosis in pediatric patients with chronic liver disease.1® As
an independent protective factor, COX-2 inhibitors have been
shown to significantly reduce the incidence of decompen-
sated events in cirrhosis patients following post-transjugular
intrahepatic portosystemic shunt placement, improve liver
function, and maintain a favorable safety profile.1>7 Addi-
tionally, while conventional non-steroidal anti-inflammatory
drugs frequently induce renal failure in patients with DC—a
key concern in cirrhosis management—short-term adminis-
tration of the selective COX-2 inhibitor celecoxib has been
demonstrated to be renally safe in cirrhotic patients with as-
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Moreover, some oxylipins have anti-inflammatory prop-
erties and are involved in the resolution of liver disease.
Administration of LXA, reduces hepatic immune cell infiltra-
tion as well as systemic inflammatory cytokine levels, thus
attenuating alcoholic steatohepatitis in both wild-type and
12/15-LOX-deficient mice.!>° Treatment with 14,15-EET pro-
tects HepG2 cells from PA-induced inflammation and oxida-
tive stress, while genetic disruption of Ephx2, which encodes
soluble epoxide hydrolase, restores EET levels and attenu-
ates liver injury.160 Notably, combined intervention with a
high w-3 fatty acid diet and administration of the selective
s-EH inhibitor TPPU (1-trifluoromethoxyphenyl-3-(1-prop-
ionylpiperidin-4-yl) urea) has been validated to attenuate
CCl,-induced liver fibrosis.6* Moreover, NASH is accompa-
nied by suppressed CYP epoxygenase activity and reduced
hepatic and circulating EET levels, while EET administration
promotes liver regeneration.162 Preclinical data have further
indicated that EET depletion by CYP epoxygenase suppres-
sion promotes NAFLD development, and EET augmentation
attenuates steatosis, NASH, and fibrosis.160,163,164 Thys, spe-
cific eicosanoids, such as LXA,, PGE,, and EETs, demonstrate
hepatoprotective properties and represent potential treat-
ment options for mitigating NAFLD progression. Potential
therapeutic targets based on oxylipin metabolism and their
corresponding oxidases in liver disease were summarized in
Figure 2B.

Future prospects

The pathogenesis of ESLD, encompassing AD and ACLF, is
highly complex, with significant heterogeneity among patient
populations. Current research on oxylipins in ESLD remains
limited and is largely derived from European cohorts with
DC.58:59 Comprehensive lipidomic or metabolomic studies are
still needed to portray oxylipin dysregulation in other ESLD
cohorts, such as those with viral hepatitis. Although existing
cohort studies suggest a strong correlation between bioac-
tive lipids and disease severity and progression in AD-ACLF,
key influencing factors, such as chronic hepatitis background,
immune and metabolic status (e.g., obesity, diabetes), and
acute insults (e.g., viral activation, infection, drug toxicity)
that induce alterations in bioactive lipids, have not been ful-
ly explored. Future research requires more detailed clinical
subgroup analyses to characterize the alterations in bioactive
lipids in complex ESLD scenarios.

From a mechanistic perspective, current research into the
interplay between oxylipins and the immune system in ESLD
has predominantly focused on macrophages, with a notable
lack of systematic studies on other crucial immune popu-
lations, including liver-resident T cell populations, granulo-
cytes, and peripheral immune cells. Furthermore, the synthe-
sis of carrier proteins, such as apolipoproteins and albumin,
which are vital for oxylipin transport, is significantly impaired
in ESLD. How this deficiency affects oxylipin-mediated sys-
temic inflammation represents an important yet understud-
ied area. Additionally, intestinal microbial dysbiosis is a key
driver of ESLD progression, yet few studies have reported its
impact on host oxylipin metabolism. Thus, future investiga-
tions are warranted to explore how specific microbial strains
interact with host enzymes (e.g., COX, LOX) to modulate
oxylipin biosynthesis, and to unravel the molecular mecha-
nisms linking particular microbial taxa to oxylipin metabolism
and immune signaling. Such efforts can lay the foundation
for developing precision therapies for ESLD based on oxylipin
and gut microbiota profiles.

Finally, due to analytical limitations, the study of a wide
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variety of bioactive lipids primarily relies on lipidomics meth-
ods using liquid chromatography-mass spectrometry tech-
niques. While non-targeted omics approaches provide a
comprehensive profile of lipids, the identification of lipid mol-
ecules is not sufficiently accurate. Conversely, targeted omics
methods, which offer reliable qualitative and quantitative in-
formation, are limited to a few categories of lipids due to the
constraints of the existing lipid molecular libraries. Therefore,
the development of new lipid quantification and in vivo track-
ing methods is essential for advancing the systematic study
of oxylipins in liver diseases.

Conclusions

While the immunoregulatory roles of oxylipins and their con-
tributions to liver injury in ESLD are increasingly recognized,
their cellular sources and precise mechanisms of action re-
main incompletely characterized. Significant challenges per-
sist, including patient heterogeneity, insufficient mechanistic
insight beyond macrophage-centric views, and technical limi-
tations in lipidomic analyses. Future research must prioritize
multi-cohort validation, detailed clinical subtyping, expanded
immune cell analyses, and the integration of host-microbe
metabolic interactions. Overcoming these hurdles will be es-
sential for developing oxylipin-based therapeutic and pre-
ventive strategies for ESLD.
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