
Copyright: © 2026 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License  
(CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided.  

“This article has been published in Journal of Clinical and Translational Hepatology at https://doi.org/10.14218/JCTH.2025.00502 and can also be viewed 
 on the Journal’s website at http://www.jcthnet.com ”.

Review Article

Journal of Clinical and Translational Hepatology 2026 
DOI: 10.14218/JCTH.2025.00502

Advancements in Understanding the Role of Oxylipins in 
Liver Injury and Liver Failure
Xiaoling Su1,2, Aidiya Yimamu1, Sheng Tu1,3, Mengxuan Hao1, Haiyang Bi1, Ting Liu1, Minmin Zhang4,  
Xianbin Xu1,3, Xia Yu1,3, Zhenyu Shan1, Jifang Sheng1,3, Yu Shi1,3*  and Zeyu Sun1,2*

1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious 
Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, 
School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; 2Yuhang Institute of Medical Science Innovation and 
Transformation, Hangzhou, Zhejiang, China; 3Department of Infectious Diseases, the First Affiliated Hospital, School of 
Medicine, Zhejiang University, Hangzhou, Zhejiang, China; 4Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 
Shandong, China

Abstract

End-stage liver disease (ESLD) is characterized by a dramatic 
deterioration of liver function, frequently accompanied by 
systemic inflammatory storms and multiple organ failures. 
Central to the onset and progression of ESLD, systemic in-
flammation arises from complex interactions among various 
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inflammatory signaling molecules and immune cells within 
and beyond the liver. As key inflammatory modulatory mol-
ecules, bioactive oxylipins have been increasingly recognized 
for their complex molecular mechanisms implicated in vari-
ous diseases. This review aims to summarize recent findings 
regarding the molecular and immunological mechanisms 
through which oxylipins contribute to the development of liver 
injury and failure, with emphasis on both substantial intrahe-
patic and extrahepatic immune and inflammatory dysregula-
tion associated with ESLD. Furthermore, this review discusses 
the translational potential of targeting oxylipins for clinical di-
agnosis, prognosis, and therapeutic intervention in ESLD.
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Introduction
The high mortality of end-stage liver disease (ESLD) is a 
global public health problem.1 The exact pathophysiological 
mechanism remains elusive, involving a multitude of com-
plex processes, including immune dysregulation and persis-
tent inflammation, which further contribute not only to an 

increased risk of infection but also to a poor prognosis.2,3 
Inflammation plays a pivotal role in ESLD progression. It trig-
gers the activation of immune cells, such as Kupffer cells 
(KCs), natural killer cells, and T lymphocytes,4,5 leading to 
the release of cytokines, such as tumor necrosis factor α 
(TNF-α), monocyte chemoattractant protein-1 (MCP-1), in-
terleukins, and CXC motif chemokine ligand 12, as well as 
other inflammatory mediators, such as lipid metabolites de-
rived from fatty acids.6,7 These bioactive lipids are potent 
inflammation regulators and thus play critical roles in the 
pathogenesis of ESLD.

There are various types of bioactive lipids, including poly-
unsaturated fatty acids (PUFAs), lysoglycerophospholipids, 
sphingolipids, phytosterols, carotenoids, phenolic lipids, and 
endocannabinoids, etc., and their generation and metabolism 
exhibit considerable complexity.8,9 These widely distributed 
lipids have multiple functions in the liver and play a crucial 
role in the regulation of hepatic signal transduction and me-
tabolism. They regulate biological processes such as cell pro-
liferation, differentiation, and apoptosis by binding to recep-
tors on a wide range of hepatic cell subpopulations. Among 
these lipid mediators, oxylipins, which are oxygenated de-
rivatives of PUFAs, are drawing increasing attention for their 
ability to orchestrate immune cell behavior and modulate in-
flammatory processes and immune responses.10

Recent studies have provided mounting evidence that ox-
ylipins play important roles in the acute and chronic phases 
of liver diseases. During the acute phase of liver injury, eicos-
anoids are produced to induce pro-inflammatory responses 
and provide mitogenic signals to promote liver regeneration. 
Subsequently, pro-resolving oxylipins are produced to resolve 
inflammation, support tissue repair, and restore hepatic ho-
meostasis.10 In contrast, sustained injury is characterized by 
persistent eicosanoid-driven inflammation, notably through 
abnormal polarization of M2 macrophages, concurrently with 
diminished pro-resolving lipids. This deficiency in pro-resolv-
ing lipids leads to reduced phagocytosis, trapping the liver 
in a state of damaging chronic inflammation that ultimately 
promotes disease progression.10 Ultimately, in progression 
to liver failure, a universal elevation of pro-inflammatory ei-
cosanoids persists without timely resolution, compounded 
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by deficiency of pro-resolving lipids. This failure to resolve 
inflammation perpetuates hepatocyte damage and activates 
the circulating immune compartment, leading to severe sys-
temic inflammation, multi-organ failure, and death.11

Therefore, bioactive oxylipins hold potential as therapeutic 
targets for liver diseases, particularly offering a promising 
approach to improve the prognosis of ESLD through modu-
lation of lipid-mediated inflammatory signaling. This review 
aims to summarize the sources of bioactive oxylipins and 
their roles under various immune conditions, and to discuss 
the molecular and immunological mechanisms through which 
bioactive oxylipins contribute to the onset and progression 
of liver injury and failure, such as decompensated cirrhosis 
(DC) and acute-on-chronic liver failure (ACLF). Ultimately, 
we seek to provide insights that may inform future strate-
gies for the prevention and treatment of ESLD based on the 
modulatory roles of oxylipins in inflammatory responses.

The types and sources of bioactive oxylipins
The n-6 PUFA (i.e., ω-6 PUFA) family of linoleic acid (18:2 
n-6, LA), gamma-linolenic acid (18:3 n-6, γ-LNA) and ara-
chidonic acid (20:4 n-6, AA), as well as the n-3 PUFA (i.e., 
ω-3 PUFA) family of alpha-linolenic acid (18:3 n-3, α-LNA), 
eicosapentaenoic acid (20:5 n-3, EPA), docosapentaenoic 
acid (22:5 n-3, DPA) and docosahexaenoic acid (22:6 n-3, 
DHA), serve as substrates for various oxidases to produce 
bioactive oxylipins, which mediate inflammatory responses.12 
The process of PUFA oxidation involves three major enzy-
matic pathways, namely cyclooxygenase (COX), lipoxyge-
nase (LOX), and cytochrome P450 (CYP450) pathways. Each 
pathway comprises multiple enzymes that produce several 
bioactive lipids (Fig. 1A). The COX enzymes, such as COX-
1 and COX-2, convert PUFAs into prostaglandins (PGs; e.g., 
PG-D/E/F/G/H/I) and thromboxane A2 (TXA2).13,14 Notably, 
COX-1 is constitutively expressed in most cells, serving as the 
primary source of prostanoids that fulfill essential housekeep-
ing functions.9,13 In contrast, COX-2 is induced by inflamma-
tory stimuli, hormones, and growth factors, and is generally 
regarded as the primary source of prostanoids in inflamma-
tory and proliferative diseases.9,13,15 On the other hand, LOX 
enzymes, including 5-LOX, 12-LOX, 15-LOX, and LOXE3, 
produce leukotrienes (LTs; e.g., LTA/B/C/D/E) and hydrox-
yeicosatetraenoic acids (HETEs; e.g., 5/8/12/15-HETE).16–19 
Among them, 5-LOX is considered to be the primary con-
tributor to LT production, and it is predominantly expressed 
by myeloid cells, including polymorphonuclear leukocytes 
(PMNs), B lymphocytes, monocytes, macrophages, dendrit-
ic cells, and mast cells.20 Furthermore, these LOX enzymes 
also synthesize anti-inflammatory mediators such as lipoxins 
(LXs) and specialized pro-resolving mediators (SPMs), includ-
ing resolvins (Rvs), protectins, and maresins (MaRs).21,22

The third oxidase family, CYP450 enzymes, is expressed 
primarily in organs such as the liver, kidney, brain, heart, and 
lung but is expressed relatively lowly in circulating cells.23,24 
Within the CYP450 superfamily, a subset of CYP2 isoforms 
is mainly responsible for epoxygenation.25 For example, 
epoxyeicosatrienoic acids (EETs), including 5,6-EET, 8,9-EET, 
11,12-EET, and 14,15-EET, are produced from AA by the ac-
tion of CYP2C and CYP2J. In parallel, epoxyeicosatetraenoic 
acids (EETs or EpETEs) are produced from EPA.25 These EET 
metabolites are then further metabolized to dihydroxyei-
cosaprienoic acids by soluble epoxide hydrolases.26 Another 
group of CYP enzymes, the CYP4s with ω-hydroxylase ac-
tivity, convert AA to HETEs, including 16-HETE, 17-HETE, 
18-HETE, 19-HETE, and 20-HETE. They also convert EPA to 
hydroxyeicosapentaenoic acids (HEPEs). Additionally, micro-

somal CYP enzymes react with AA to produce HETEs. Many 
of these lipid derivatives are unstable and undergo rapid 
conversion to other products through enzymatic and non-
enzymatic actions.27,28 Ongoing investigations are unraveling 
the diverse biological functions mediated by these lipid de-
rivatives, with an expanding collection of structurally distinct 
species being systematically characterized.

Oxylipins are generated by various types of cells, includ-
ing immune cells such as macrophages and neutrophils, as 
well as endothelial cells and adipocytes. Among these, SPMs 
are mainly produced via transcellular biosynthesis, with M2 
macrophages and PMNs acting as key participants.29 Leu-
kotrienes are mainly biosynthesized by leukocytes from 
myeloblastic (neutrophils, eosinophils, and mast cells) and 
monoblastic lineages (monocytes and macrophages).20,30 
Anti-inflammatory LXs are formed by transcellular biosyn-
thesis via multiple collaborating pathways in leukocytes (in-
cluding eosinophils and monocytes), platelets, and epithelial 
cells.18,21,29 Rvs are produced through the interactions of 
COX-2 and LOX activities in endothelial cells, leukocytes (in-
cluding PMNs), and glial cells.31–34 The differential expression 
of COX within inflammatory cells determines the production 
of different prostanoids, such as PGD2 by mast cells and PGE2 
and TXA2 by macrophages.35 In addition, EETs are produced 
in the liver at biologically relevant levels and are also detect-
ed in the vasculature and cardiomyocytes.9 In summary, the 
complexity of oxylipin biosynthesis arises from the dynamic 
interplay between diverse cell types and their microenviron-
ment, where transcellular metabolism and spatial enzyme 
distribution collectively dictate the spectrum of bioactive lipid 
mediators and thus their functions in regulating inflamma-
tion, immune response, and tissue repair.

The modulatory roles of oxylipins in inflammatory 
responses
Classical eicosanoid metabolites, including PGs, LTs, and TXs, 
have been well-studied as inflammatory mediators. Gener-
ally, AA-derived pro-inflammatory 2-series PGs, 4-series LTs, 
and related lipid mediators exhibit substantially higher pro-
inflammatory potency, whereas EPA-derived 3-series PGs, 
3-series TXs, and 5-series LTs exert attenuated inflamma-
tory bioactivity relative to their AA-derived homologs.8,10,19 
Despite their low physiological concentrations in the body, 
these eicosanoids exhibit profound biological activity: they 
can modulate cellular functions by binding to specific recep-
tors, triggering signal transduction pathways within a short 
timeframe to elicit significant physiological effects. Among 
these, TXs promote hepatic microvascular constriction and 
stimulate the release of pro-inflammatory cytokines, caus-
ing platelet aggregation and leukocyte recruitment.10,36,37 
Prostaglandins, particularly PGE2 and PGI2, act as cytokine 
amplifiers and drive the switch between acute and chronic in-
flammation through multiple mechanisms, including enhanc-
ing cytokine release, intensifying innate immune responses 
to pathogen- and damage-associated patterns (PAMPs and 
DAMPs), differentiating immune cells into pro-inflammatory 
subsets, recruiting T helper cells, and increasing the expres-
sion of cytokine-induced pro-inflammatory genes.11,38,39 
Leukotrienes, such as LTB4, can recruit leukocytes (espe-
cially neutrophils and macrophages) to sites of inflamma-
tory or immune responses and induce these cells to produce 
pro-inflammatory cytokines, including TNF-α and interleu-
kins (IL-1β/-6/-8).40 On the other hand, LTB4 also appears 
to promote immune defenses by modulating the functions 
of T lymphocytes (increasing proliferation and production of 
IL-2 and interferon-γ, suggesting enhanced Th1 cell activ-
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Fig. 1.  Biosynthesis, cellular targets, and functional roles of oxylipins in liver injury. (A) Oxylipins are mainly synthesized via cyclooxygenase (COX), lipoxy-
genase (LOX), and cytochrome P450 (CYP450) pathways. Key pro-inflammatory oxylipins (red) and pro-resolving oxylipins (green) are highlighted. (B) Each oxylipin 
acts on liver cells through its corresponding receptors and signaling pathways. (C) Pro-inflammatory oxylipins promote liver injury by inducing the recruitment of im-
mune cells, amplifying pro-inflammatory signaling, activating quiescent HSCs into collagen-secreting myofibroblasts, and triggering hepatocyte apoptosis. Pro-resolving 
oxylipins counteract these pathological processes by promoting inflammation resolution, driving macrophage polarization toward the anti-inflammatory M2 phenotype, 
facilitating fibrosis regression, and enhancing hepatic tissue repair, ultimately supporting the recovery of normal liver function. Figure created with BioRender. TXA2, 
thromboxane A2; PGE2, prostaglandin E2; PGI2, prostaglandin I2; LXA4, lipoxin A4; LTB4, leukotriene B4; HETEs, hydroxyeicosatetraenoic acids; EETs, epoxyeicosatrie-
noic acids; HSC, hepatic stellate cell; TP, thromboxane receptor; EP, prostaglandin E receptor; IP, prostaglandin I receptor; BLT, leukotriene B receptor; FPR, N-formyl 
peptide receptor; GPR, G-protein-coupled receptor.
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ity), B lymphocytes (promoting differentiation and increasing 
immunoglobulin E production), and natural killer cells (aug-
menting cytotoxicity).40

The functions of non-classical eicosanoid metabolites, 
such as EETs and HETEs generated from AA, are less well un-
derstood, and warrant further investigation. Recent findings 
indicate that 20-HETE can stimulate endothelial cells to re-
lease inflammatory IL-4, IL-8, and IL-13.41 Adipocytes chal-
lenged by 12/15-LOX produced 12-HPETE and 12(S)-HETE 
and also augmented the expression of pro-inflammatory 
cytokines such as TNF-α, MCP-1, IL-6, and IL-12p40.42 In-
terestingly, 5-HETE derived from AA can either be metabo-
lized to inflammatory LTs by 5-LOX,43 or, conversely, be con-
verted into anti-inflammatory LXs and their derivatives by 
12-LOX. LXs have been shown to exert anti-inflammatory 
effects by enhancing macrophage-mediated clearance of ap-
optotic neutrophils, thereby promoting the resolution of in-
flammation.44,45 Moreover, EETs produced by CYP2 enzymes 
also have anti-inflammatory effects, which can reduce the 
expression of vascular cell adhesion molecule in endothelial 
cells and inhibit the secretion of cytokines by macrophages.46

It has been demonstrated that AA-derived HETEs, EPA-de-
rived HEPEs, and DHA-derived hydroxyeicosahexaenoic ac-
ids (HDHAs), as intermediate precursors in SPM biosynthet-
ic pathways, can be further converted into bioactive SPMs 
with anti-inflammatory and pro-resolving functions.47 These 
SPMs include LXs (e.g., EPA-derived LXA5, AA-derived LXA4 
and LXB4), Rvs (RvDs and RvEs), MaRs, and neuroprotectin 
D1).10 By binding to specific receptors, these SPMs activate 
or inhibit intracellular signaling pathways, not only reducing 
excessive inflammatory responses but also actively driving 
the resolution of inflammation (e.g., enhancing efferocytosis 
and promoting tissue repair) to facilitate tissue homeostasis 
restoration.11

Oxylipins typically bind to and activate specific members 
of the G protein-coupled receptor (GPCR) family. The diver-
sity of GPRs allows oxylipins to target signaling pathway ac-
tivation based on distinct receptor combinations, resulting in 
diverse cellular functions. Taking PGE2 binding to prostanoid 
E receptors (EPs; EP1–EP4) as an example, EP1 and EP2 re-
quire higher concentrations of PGE2 to initiate signaling cas-
cades, whereas EP3 and EP4 can be stimulated at lower li-
gand concentrations.48 Stimulation of EP2 and EP4 receptors 
leads to the activation of ERK1/2, AKT, NF-κB, and β-catenin 
signaling pathways, ultimately enhancing cell survival and 
migration.49 Most splice variants of EP3 function as Gi-cou-
pled receptors that inhibit adenylate cyclase and modulate 
anti-inflammatory responses, while EP1-mediated signaling 
involves the stimulation of intracellular calcium.50 Addition-
ally, Rvs (including RvD and RvE), MaRs, and LXA4 share the 
same receptor ALXR (also known as N-formyl peptide recep-
tor 2, FPR2), while EETs and HETEs interact with GPCRs such 
as GPR75, GPR40, and GPR120.51–55 These interactions high-
light the complex and specific roles of oxylipins in regulating 
inflammatory responses and cellular functions, as summa-
rized in Figure 1B and C. For more extensive coverage of the 
regulatory functions of oxylipins, see Chiurchiù’s and Calder’s 
comprehensive review.39,40

Oxylipins and key associated lipids in liver injury and 
liver failure
Recent studies have documented altered oxylipid signatures 
in patients with liver cirrhosis or ACLF.56–58 The study based 
on the European CANONIC Cohort of ESLD observed a gen-
eralized suppression of lipids in cirrhosis patients, with sphin-
gomyelin being linked to the acute decompensation (AD) 

stage and cholesteryl esters and lysophosphatidylcholine 
(LPC) correlated with ACLF pathogenesis.58 Another study of 
the European CANONIC Cohort identified 16 plasma oxylipins 
significantly associated with cirrhotic status.59 Within these 
compounds, LTE4 and 12-hydroxyheptadecatrienoic acid (12-
HHT) can be used to identify ACLF patients, while LTE4 levels 
correlate with ACLF severity and inflammation markers. Fur-
thermore, the combination of LTE4, LXA5, and 12,13-epoxy-
9-keto-10(trans)octadecenoic acid (EKODE) was linked to 
short-term mortality in ACLF patients.59 Furthermore, albu-
min from patients with AD exhibited lower content of PUFAs 
and PGE2, as well as lower levels of monohydroxy FA precur-
sors of anti-inflammatory/pro-resolving lipid mediators, such 
as 15-HETE, compared to healthy subjects.60 These studies 
clearly show that the pathogenesis of ACLF or cirrhosis is 
closely associated with complex lipidomic modulation, re-
vealing a complex interplay between lipid metabolism and 
disease progression.

Additionally, some studies investigated lipidomic modula-
tion in patients with hepatitis B virus (HBV) infection, which 
significantly contributed to DC and ACLF in China and other 
Asian countries. Patients with HBV-ACLF exhibited increased 
levels of pro-inflammatory n-6 PUFA derivatives, including 
8,9-EET, PGD1/2, PGJ2, 11β-PGF2α, 11β-PGE2, LTB4, LTD4, 
LTF4, 11-trans-LTE4, TXB1/2/3 alongside various HETE com-
pounds (5/8/9/11/12/15-HETE). Consistently, elevated 
EPA-derived metabolites (such as RvE1 and 5/8/9/12/15-
HEPE) and DHA-derived metabolites (such as protectin D1, 
RvD1/3/5, and 4/8/10/11/13/14/16/17/20-HDHA) were also 
observed in HBV-ACLF patients compared to HBV-DC pa-
tients.61 Furthermore, a recent study demonstrated a signifi-
cant increase in eicosanoid production in HBV-ACLF patients, 
including 9-hydroxyoctadecadienoic acid (9-HODE), 13-
HODE, 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME), 
and 9,10-DiHOME.62 In patients with HBV-related hepatocel-
lular carcinoma (HCC), eight LA-derived and AA-derived ei-
cosanoids were found to be significantly elevated, of which 
9- and 13-HODE in particular have shown potential as HCC 
biomarkers.63 In another study to portray oxylipin profiles 
related to chronic HBV infection progression, the authors 
observed increased levels of CYP450-derived 9,10-DiHOME, 
12,13-DiHOME, and 14,15-dihydroxyeicosatrienoic acid in 
HBV-related liver cirrhosis and HCC patients.64 In addition to 
their potential as HBV-related ESLD markers, a recent clinical 
trial revealed that removing pro-inflammatory eicosanoids 
by hemoperfusion adsorption was associated with favorable 
outcomes in ACLF patients.65

Scientists also found that patients with alcohol-relat-
ed liver disease (ALD) or non-alcoholic fatty liver disease 
(NAFLD) had different oxylipin profiles.66 A 2022 cohort 
study revealed that severe NAFLD patients exhibited signifi-
cantly elevated plasma levels of specific oxylipins, including 
both pro-inflammatory PGF2α and pro-resolving LXB4 and 
MaR-1.67 The authors found that serum oxylipins, including 
8,9-dihydroxyeicosatrienoic acid, 4-hydroxydocosahexaenoic 
acid, 14-hydroxydocosahexaenoic acid, LXA4, and 12S-HETE, 
were decreased in alcoholic hepatitis patients compared to 
those with alcohol use disorder.68 Of particular interest, el-
evated 20-HETE levels were associated with increased he-
patic steatosis, polymorphonuclear neutrophil infiltration, as 
well as higher 90-day mortality in patients with ALD.68 An-
other study reported that 13-HODE was markedly elevated 
in patients with moderate alcoholic hepatitis, distinguishing it 
from mild alcohol-associated liver injury.69 Collectively, these 
studies highlighted the potential of oxylipins as dynamic bio-
markers, not only for tracking ALD/NAFLD progression but 
also for distinguishing disease severity and subtypes.
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Liver disease-specific lipid signatures can also be found 
in circulating extracellular vesicles (EVs). For instance, low 
levels of circulating EVs were found in patients with cirrhosis, 
regardless of severity, and altered EV lipid content showed 
considerable correlation with disease status.70 Specialized 
lipid mediators from EVs, including 18-HEPE, RvEs, RvDs, 
and MaRs, were lower in ACLF patients than in AD patients 
without ACLF. In AD, levels of EV-harbored RvE1 correlated 
closely with CD5L levels. Moreover, functional studies in mac-
rophages indicated a positive feedback loop between CD5L 
and RvE1 biosynthesis that orchestrated the resolution of 
inflammation. This study suggested that the dramatic altera-
tion of circulating EV contents along with loss of anti-inflam-
matory molecules was closely related to disease progression 
during the development of AD-ACLF.70 The oxylipin markers 
associated with ESLD progression were visualized in Figure 
2A, and their potential diagnostic implications have been 
summarized in Table 1.58–65,67–70

Collectively, the oxidative lipidomic analyses of clinical 

samples from the European CANONIC Cohort of ESLD pa-
tients, Chinese HBV-related ACLF patients (or patients from 
other Asian countries), as well as individuals with ALD or 
NAFLD, demonstrate that oxylipins exhibit considerable clini-
cal diagnostic potential as etiology-specific, stage-sensitive, 
and prognosis-associated biomarkers. Across geographically 
diverse populations and heterogeneous etiologies, these 
oxylipin signatures exhibit consistent associations with dis-
ease progression, organ dysfunction, and clinical outcomes, 
underscoring their robustness as universal diagnostic tools. 
Collectively, these findings validate the significant clinical 
diagnostic utility of oxylipins and support their potential in-
tegration into routine clinical practice to enhance diagnostic 
precision, optimize risk stratification, and guide the person-
alized management of patients with liver injury and liver 
failure. Nevertheless, the clinical application of oxylipins in 
ESLD diagnosis remains hampered by several challenges, 
including insufficient granularity in disease subgroup strati-
fication in current studies and limitations in analytical meth-

Fig. 2.  Dynamic changes of oxylipins and therapeutic opportunities during liver disease progression. (A) As liver pathology advances from chronic inflam-
mation to cirrhosis, acute-on-chronic liver failure, or hepatocellular carcinoma, a general trend characterized by elevated levels of pro-inflammatory oxylipins (e.g., 
20-HETE, TXA2, PGE2) and reduced abundance of pro-resolving oxylipins (e.g., RvD1, RvE1) is observed. These dynamic shifts highlight the potential of oxylipins as 
biomarkers for tracking disease severity and as therapeutic targets. (B) Targeting oxylipin metabolism and homeostasis, therapeutic strategies for liver diseases may 
be constructed as follows: prophylactic approaches prioritize maintaining oxylipin balance via ω-3 PUFA supplementation to enrich pro-resolving oxylipin precursors and 
modulate healthy gut microbiota; interventions against fibrosis and chronic inflammation focus on restoring the pro-inflammatory/pro-resolving oxylipin equilibrium by 
using sEH inhibitors to elevate EET levels, using exogenous pro-resolving lipid analogs and receptor antagonists; and management of inflammatory storms relies on 
mitigating excessive pro-inflammatory oxylipin activity by using COX-2/5-LOX inhibitors, pro-resolving lipid analogue therapy, hemadsorption to clear pro-inflammatory 
mediators, and albumin infusion to sequester pro-inflammatory PGE2. Figure created with BioRender. HSCs, hepatic stellate cells; PGE2, prostaglandin E2; LTB4, leu-
kotriene B4; LXA4, lipoxin A4; RvD1, resolvin D1; 20-HETE, 20-hydroxyeicosatetraenoic acid; TXA2, thromboxane A2; 12-HETE, 12-hydroxyeicosatetraenoic acid; RvE1, 
resolvin E1; PUFAs, polyunsaturated fatty acids; EETs, epoxyeicosatrienoic acids; TP, thromboxane receptor; COX-2, cyclooxygenase-2; 5-LOX, 5-lipoxygenase.
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odologies (see detailed discussions in the Future Prospects 
section).

Mechanism of oxylipins involved in liver injury and 
liver failure
The pro-inflammatory role of COX-2 and its major oxylipin 
products in liver injury has been extensively studied. During 
acute liver injury, the upregulation of COX-2 expression leads 
to the production of PGs and TXs, which can exacerbate in-
flammation and hepatocyte damage.71–74 Conversely, inhibi-
tion of COX-2 can protect the liver from ischemia-reperfusion 
(I/R) injury by reducing neutrophil infiltration.75–77 Further-
more, several studies have shown that COX-2 is highly ex-
pressed in activated hepatic stellate cells (HSCs, a central 
cell type driving liver fibrosis),78,79 and it modulates MCP-1 
expression via the prostaglandin-cAMP pathway, thereby en-
hancing the pro-inflammatory potential of HSCs.80 Consist-
ently, COX-2 induction and increased PGE2 production are 
found to be closely associated with platelet-derived growth 
factor-stimulated proliferation and migration of HSCs.81,82 
Conversely, celecoxib-mediated COX-2 inhibition alleviates 
liver cirrhosis in thioacetamide (TAA) rat models by attenu-
ating the COX-2/PGE2/EP2/p-ERK signaling, which enhances 
intestinal epithelial barrier function by upregulating ZO-1 
and E-cadherin, blocks inflammatory transport through the 
gut-liver axis, and ameliorates the progression of liver fibro-
sis.83 In a lipopolysaccharide (LPS)/galactosamine-induced 
acute liver injury model, the reduction of PGE2 levels medi-
ated by the targeted expression of 15-hydroxyprostaglandin 
dehydrogenase diminished hepatocyte death.84 A Chinese 
hepatitis B cohort study found that plasma PGE2 levels were 
higher in ACLF patients, and these elevated PGE2 levels were 
closely associated with systemic inflammation and disease 
severity.85 Elevated concentrations of PGE2 have also been 
observed in patients with AD.86 In vitro experiments dem-
onstrated that plasma from patients with AD and ESLD sup-
pressed macrophage pro-inflammatory cytokine secretion 
and bacterial killing in a PGE2-dependent manner, which was 
mediated by EP2.86 Additionally, another investigation re-
vealed that monocyte dysfunction in patients with DC was 
also mediated by PGE2 via its EP4 pathway.87

However, certain PGs exhibit a dual role in liver physiology. 
While they can induce inflammation and aggravate liver inju-
ry, there is emerging evidence suggesting that they may also 
possess hepatoprotective effects and facilitate hepatocyte 
regeneration. Notably, in vitro studies have demonstrated 
that COX-2-derived PGE2 inhibits both basal and transform-
ing growth factor-β1-mediated collagen synthesis in HSCs, a 
key mechanism mitigating fibrogenesis.88 Interestingly, de-
pletion of PGE2 synthase (PGES) 1 in a mouse non-alcoholic 
steatohepatitis (NASH) model leads to liver inflammation and 
hepatocyte apoptosis, showing increased TNF-α release upon 
LPS treatment.89 Consistently, studies also demonstrated 
that knockout of COX-2 or administration of PGES inhibitors 
aggravated acetaminophen-induced liver injury.71,90 On the 
other hand, it has been noted that PGE2 exhibits hepato-
protective effects by inducing proliferation, which may be 
mediated by receptor isoforms.91,92 For instance, neutrophil 
accumulation was inhibited by EP4 (a subtype of PGE2 re-
ceptor) agonist treatment, which significantly alleviated he-
patic I/R injury.75 PGE2 has been shown to reduce fat deposi-
tion in mouse primary hepatocytes exposed to palmitic acid 
(PA).93 Furthermore, methionine-choline-deficient diet-fed 
mice lacking the PGI2 receptor developed more severe pro-
gression of NASH, indicating that PGI2 played a crucial role 
in the development and progression of steatohepatitis by 

modulating the inflammatory response.94 In conclusion, the 
balance between these pro- and anti-inflammatory functions 
of prostaglandins (particularly PGE2), as well as their effects 
on cell growth and apoptosis, determines their role in the 
progression of liver disease. A comprehensive understand-
ing of these intricate and delicate balances is crucial for the 
development of effective therapeutic strategies against liver 
diseases, including ACLF and others.

In addition to COX-2-derived lipids, oxylipins produced 
by liver-enriched CYP450 also play crucial pathophysiologi-
cal roles. The most abundant CYP450-derived oxylipin is 
20-HETE, which accounts for 50% to 70% of eicosanoids 
produced in the liver.95 The pleiotropic effects of 20-HETE 
encompass regulation of vascular tone, promotion of in-
flammatory response, and modulation of cell proliferation 
and apoptosis. 20-HETE has been found to induce hepatic 
fibrosis mainly via the transforming growth factor-β/Smad3 
pathway.96 Moreover, a lipidomic analysis revealed that 20-
HETE was the predominant eicosanoid compound in cirrho-
sis patients, with levels even higher than those of PGs and 
TXs, suggesting its potential significance in cirrhotic progres-
sion.97 Recent genome-wide association studies have linked 
GPR75 variants to reduced risk of hepatic steatosis.98,99 
Mechanistically, 20-HETE activates GPR75-dependent path-
ways, promoting vasoconstriction and hypertensive pheno-
types.54,100,101 Collectively, these findings suggest that the 
20-HETE-GPR75 axis may serve as a critical mediator in the 
pathogenesis of liver fibrosis and portal hypertension. Future 
investigations are warranted to determine the physiologi-
cal and pathological roles of hepatic 20-HETE, elucidate the 
functional interplay between GPR75 and liver disease pro-
gression, and evaluate the therapeutic potential of targeting 
this pathway in ESLD.

Higher expression of LOXs, including 5-LOX, 12-LOX, and 
15-LOX, has been found in liver diseases.102–104 LXs are gen-
erated from AA via biosynthetic pathways involving dual LOX 
combinations either by 5/15-LOX or by 5/12-LOX, and have 
been extensively studied preclinically for their anti-inflam-
matory effects or their roles in promoting resolution of in-
flammation.105 LXA4, the major physiological LX form, could 
promote apoptosis and inhibit proliferation, migration, and 
angiogenesis of HepG2 hepatocarcinoma cells stimulated by 
LPS or by macrophage-conditioned media.105 However, LXA4 
has also been demonstrated to be involved in the induction of 
myeloid-derived suppressor cells after Treg depletion, which 
tunes tumor-associated inflammation and promotes tumor 
growth.106 A study revealed that 12-LOX-mediated 12-HETE 
production was enhanced during I/R injury, and blockade of 
this pathway ameliorated I/R-induced liver dysfunction, in-
flammation, and cell death.107 Moreover, activation of this 
pathway is also enhanced in NAFLD, where 12-HETE induces 
matrix metalloprotein expression by activating the PI3K/
AKT/NF-κB pathway, thus leading to epithelial-mesenchymal 
transition and HCC recurrence in fatty liver more than in nor-
mal liver.103 LTB4 and LTC4 are inflammatory lipid mediators 
derived from AA via 5-LOX oxidation, and they contribute to 
liver fibrosis by activating the extracellular signal-regulated 
protein kinase pathway in HSCs.102 Moreover, hepatic 15-
HETE production is disturbed in 3,5-diethoxycarbonyl-1,4-di-
hydrocollidine-treated mice, and reducing 15-HETE levels via 
inhibiting 15-LOX results in apoptosis.108,109 Overall, these 
findings highlight the complex role of LOXs and relevant ox-
ylipins in liver disease. The balance between these metabo-
lites and their regulatory mechanisms is crucial for maintain-
ing liver health and preventing disease progression. Table 2 
lists some oxylipins and their known pathways involved in 
liver injury and liver failure.54,68,71–77,80–83,85–94,96–103,105–109
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Interaction between oxylipins and liver immune cells
KCs, the resident macrophages in the liver, release PGs in re-
sponse to LPS stimulation.74,110,111 Compared to other mac-
rophage populations, KCs are particularly active in produc-
ing PGE2. The expressions of both COX-2 and PGES1 were 
induced in KCs within 3 to 24 hours post-LPS treatment.112 
Moreover, KCs have also been confirmed as the primary 
source of TXA2.113–115 The concentration of TXA2 in the cul-
ture medium of KCs isolated from bile duct ligation (BDL) 
mice was significantly higher than that from normal mice.73 
The TXA2 produced by KCs binds to thromboxane prostanoid 
(TP) receptors, which activates T cells and promotes immune 
cell infiltration.116 Inhibiting the COX-2 activity of KCs results 
in reduced hepatic production of TXA2,36,113,114 which subse-
quently leads to the production of LTB4 and the 15-epimer of 
LXA4.117 In addition, KCs from damaged livers, when treated 
with phorbol ester or calcium ionophore, produce more LTs 
than PGE2.118 The enzyme 5-LOX is highly expressed in KCs 
and HSCs.119 Researchers found that KCs utilized 12-/15-
LOX to produce LTs,120 and they also produced immunosup-

pressive HETEs and HDEAs via 15-LOX when exposed to 
DAMP signals from apoptotic cells.121

Treatment with inhibitors of 5-LOX and its activating pro-
tein FLAP affects KC morphology and apoptosis, leading to KC 
depletion and reduction of liver inflammation.122,123 Inhibiting 
LOX reduces the production of reactive oxygen species (ROS) 
by macrophages in response to liver injury.124 Additionally, 
blocking the LTB4 receptor inhibits the expression of EGF, 
VEGF, and VEGF receptors in macrophages and affects their 
recruitment and I/R-induced liver injury.125 Furthermore, 
PGE2 and TXA2 have been shown to regulate the function of 
KCs. Specifically, PGE2 was shown to inhibit IL-1, IL-6, and 
ROS production by KCs in a dose-dependent manner.16,126,127 
Deficiency of TP receptor (activated by TXA2) reduced pro-
inflammatory gene expression and cytokine secretion in KCs 
stimulated by TNF-α, H2O2, or PA.128 Conversely, TXA2 pro-
moted KC activation in a TP receptor-dependent manner, 
thereby contributing to lipogenesis in primary hepatocytes 
and the development of NAFLD.128

Bioactive oxylipins critically regulate KC polarization dur-

Table 2.  Summary of oxylipin mechanisms in liver diseases

Oxylipin(s) Enzyme(s) Liver diseases Mechanism of action References

PGs & TXs COX-2 Acute liver 
injury

COX-2 upregulation leads to production of PGs and TXs, 
exacerbating inflammation and hepatocyte damage; COX-2 
Inhibition reduces neutrophil infiltration and I/R injury

71–77

PGs COX-2 Liver fibrosis COX-2 modulates MCP-1 expression via PG-cAMP pathway 80

PGE2 COX-2/
PGES1

ACLF, AD Elevated in AD and ACLF, associated with systemic 
inflammation; Suppresses macrophage proinflammatory 
cytokine secretion and bacterial killing via receptor EP2; 
Mediates monocyte dysfunction via receptor EP4

85–87

Liver fibrosis, 
liver cirrhosis

Increased PGE2 is associated with PDGF-stimulated 
proliferation and migration of HSCs; PGE2 inhibits both 
basal and transforming TGF-β1-mediated collagen synthesis 
in HSCs; Celecoxib-mediated COX-2 inhibition alleviates 
liver cirrhosis via COX-2/PGE2/EP2/p-ERK signaling

81–83,88

NASH, APAP-
induced injury

Depletion leads to increased liver inflammation and 
apoptosis in NASH; Induces hepatocyte proliferation 
via receptor isoforms; Reduces fat deposition 
in hepatocytes; EP4 receptor agonist inhibits 
neutrophil accumulation, alleviating I/R injury

71,75,89–93

PGI2 COX-2 NASH Hepatoprotective; lack of its receptor leads to severe NASH 94

LXA4 5/15- or 
5/12-LOX

HCC Anti-tumorigenic, promotes apoptosis and inhibits 
proliferation, migration, and angiogenesis in 
hepatocarcinoma cells; Pro-tumorigenic, induction 
of MDSCs, which promotes tumor growth

105,106

LTB4, LTC4 5-LOX Liver fibrosis Contribute to liver fibrosis by activating 
the ERK pathway in HSCs

102

12-HETE 12-LOX NAFLD/HCC 12-LOX blockade ameliorates I/R induced liver dysfunction, 
inflammation, and cell death; In NAFLD, induces matrix 
metalloproteinase expression via PI3K/AKT/NF-κB 
pathway, leading to EMT and higher HCC recurrence

103,107

15-HETE 15-LOX Cholestatic 
liver injury

Hepatoprotective; its reduction via 15-LOX 
inhibition results in hepatocyte apoptosis

108,109

20-HETE CYP450 Liver fibrosis, 
cirrhosis, ALD

Dominant eicosanoid in cirrhosis, induces hepatic fibrosis 
via the TGF-β/Smad3 signaling; Promotes vasoconstriction 
and hypertension via the GPR75 pathway; Enhances 
hepatic steatosis and neutrophil infiltration in ALD

54,68,96–
101

PG, prostaglandin; TX, thromboxane; COX-2, cyclooxygenase-2; I/R, ischemia-reperfusion; MCP-1, chemoattractant protein-1; PGES1, PGE2 synthase 1; AD, acute 
decompensation; ACLF, acute-on-chronic liver failure; PDGF, platelet-derived growth factor; HSC, hepatic stellate cells; TGF-β, transforming growth factor-β; EP, prosta-
glandin E receptor; NASH, non-alcoholic steatohepatitis; APAP, acetaminophen; LX, lipoxin; LOX, lipoxygenase; HCC, hepatocellular carcinoma; MDSC, myeloid-derived 
suppressor cell; LT, leukotriene; NAFLD, non-alcoholic fatty liver disease; CYP450, cytochrome P450; ALD, alcohol-related liver disease; GPR, G protein-coupled receptor.
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ing liver disease progression. Cytokine-driven reprogram-
ming governs macrophage differentiation into pro-inflam-
matory (M1) or anti-inflammatory (M2) states, with KCs 
predominantly adopting an M1 phenotype in injury con-
texts.129,130 Crucially, transition to the M2 phenotype enables 
inflammation resolution and tissue regeneration—a process 
orchestrated by SPMs.131,132 Notably, RvD1, a key member 
of the RvD family, significantly attenuates the I/R-induced 
changes in macrophages, inhibits the expression of IL-1β and 
IL-6, alleviates the M1 polarization state of KCs during liver 
injury, and promotes the resolution of inflammation.131,133 
This regulatory effect of RvD1 depends on the presence of 
KCs. Depletion of KCs using liposomal clodronate abolishes 
its impact on pro-inflammatory mediators and macrophage 
polarization.131,133 Similarly, MaR1 has been demonstrated 
to enhance the expression and transcriptional activity of 
retinoic acid-related orphan receptor α, which is considered 
a key regulator of polarization in liver macrophages. This 
consequently results in an increase in the M2 polarization of 
KCs.134 However, conflicting evidence suggests that spleen- 
and bone marrow-derived macrophages, rather than KCs, 
may serve as the primary source of SPMs.135 Taken together, 
these findings indicate that various oxylipins can modulate 
macrophage function, with their effects intricately linked to 
the cellular context and specific subsets of macrophages in-
volved.

Furthermore, while the interaction between oxylipins and 
liver macrophages is well-documented, recent research has 
also focused on the effects of oxylipins, particularly PGs, 
on other cell subgroups such as HSCs, T cells, and neutro-
phils.105,106,127,136 For instance, PGE2 is shown to dose-de-
pendently drive neutrophilic inflammation resolution in the 
absence of macrophages in a zebrafish model.137 Research-
ers have demonstrated that PGE2 can increase the immuno-
suppressive potential of Treg cells and convert CD4+CD25− 
T cells into an immunosuppressive phenotype by inducing 
FOXP3.136,138 Moreover, studies have shown that senescent 
HSCs produce PGE2 in NASH, which plays a pivotal role in 
suppressing antitumor immunity.139 Concurrently, TXA2 acts 
on T cells to trigger an immunosuppressive pathway that is 
dependent on the guanine exchange factor ARHGEF1, sup-
pressing T cell receptor-driven kinase signaling, proliferation, 
and effector functions. This mechanism may create a permis-
sive microenvironment conducive to hepatic metastasis.140 
Certain oxylipins exert their effects on liver cells through 
their respective known receptors and signaling pathways, 
with the corresponding functional outcomes illustrated in 
Figure 1B and C.

Impact of gut microbiota on oxylipin metabolism
The gut microbiota has been shown to modify host oxylipin 
metabolism, exerting a certain influence on inflammation 
and metabolic homeostasis.141 For instance, Bacteroides fra-
gilis has been shown to downregulate host pro-inflammato-
ry oxylipins such as 15-oxoETE while increasing AA levels, 
which are associated with reduced hepatic lipid accumulation 
and inflammation.142 While intestinal microbial imbalance is 
a well-recognized contributor to the occurrence and progres-
sion of ESLD through metabolic disorders and PAMP-induced 
inflammation, little is known about the potential impact on 
host oxylipin metabolism. Some recent studies have investi-
gated the effect of gut microbiota dysbiosis on host oxylipin 
pathways. For instance, gut microbiota dysbiosis induced by 
antibiotics or obesogenic diets significantly altered plasma 
oxylipin profiles in rats, with specific bacterial taxa like Pro-
teobacteria positively correlated with the pro-inflammatory 

oxylipin LTB4, linking microbial imbalance to obesity-related 
inflammation.143 Additionally, another study has shown that 
translocation of the microbial metabolite lipoteichoic acid 
may cause excess PGE2 production via COX-2 activation, 
thereby contributing to HCC progression.139 Microbial lysates 
from patients with spontaneous bacterial peritonitis signifi-
cantly enhance TXB2 secretion in both human and mouse 
KCs, highlighting a direct microbial influence on TX synthe-
sis.144 Collectively, these findings indicate that gut microbiota 
may be a pivotal regulator of oxylipin-driven inflammatory 
and metabolic processes. However, the causal relationships 
and detailed mechanisms through which specific gut micro-
bial communities influence host oxylipin pathways remain 
largely unexplored. Future studies are warranted to inves-
tigate how individual bacterial strains or consortia interact 
with host enzymes (e.g., COX, LOX, and CYP450) to modu-
late oxylipin metabolism and to unravel the molecular links 
between the microbiome and oxylipin-mediated immune 
signaling in the progression of liver diseases. Such investi-
gations are expected to map potential networks across the 
microbiota-oxylipin-liver axis, thereby facilitating the crea-
tion of a comprehensive mechanistic framework linking the 
gut microbiota, oxylipins, and liver disease.

Bioactive oxylipins as potential therapeutic targets 
in liver injury and liver failure
Bioactive oxylipins and their corresponding oxidases, COXs, 
LOXs, and CYP450 enzymes, have been considered potential 
therapeutic targets in the context of liver injury and liver 
failure due to their involvement in the progression or res-
olution of liver disease (Fig. 2). Inhibition of enzymes and 
their related metabolites has been shown to alleviate liver 
inflammation and associated complications such as steatosis 
and fibrosis. COX-derived PGE2 plays a significant role in im-
munosuppression in AD patients, and its level is increased 
in ACLF patients.86,145 Albumin binds to PGE2 and reduces 
its bioavailability, which in turn increases circulating TNF-α 
levels, reduces monocyte anergy, thereby potentially lower-
ing infection risk.86 The COX-2 inhibitor JTE-522 has been 
demonstrated to effectively reduce fibrogenesis in both rat 
models of liver cirrhosis induced by a choline-deficient diet 
and in a model of liver fibrosis induced by TAA.37,146 Addi-
tionally, other COX-2 inhibitors, including DFU, meloxicam, 
and celecoxib, have individually demonstrated the ability to 
decrease TAA-induced liver injury, reduce BDL-induced col-
lagen accumulation, and attenuate hepatic fibrosis and cir-
rhosis caused by BDL, CCl4, and TAA.147–151 Genetic ablation 
or pharmacological inhibition of 5-LOX by targeted delivery 
of the inhibitor zileuton improved CCl4- and methionine-cho-
line-deficient diet-induced hepatic fibrosis and liver injury.102 
Furthermore, zileuton has been shown to reduce acetami-
nophen- and LPS-induced liver injury, delay disease progres-
sion in HFD-induced NAFLD, and inhibit tumor development 
in diethylnitrosamine-induced HCC.152–155 Clinically, admin-
istration of meloxicam has been found to ameliorate hepatic 
fibrosis in pediatric patients with chronic liver disease.156 As 
an independent protective factor, COX-2 inhibitors have been 
shown to significantly reduce the incidence of decompen-
sated events in cirrhosis patients following post-transjugular 
intrahepatic portosystemic shunt placement, improve liver 
function, and maintain a favorable safety profile.157 Addi-
tionally, while conventional non-steroidal anti-inflammatory 
drugs frequently induce renal failure in patients with DC—a 
key concern in cirrhosis management—short-term adminis-
tration of the selective COX-2 inhibitor celecoxib has been 
demonstrated to be renally safe in cirrhotic patients with as-
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cites.158

Moreover, some oxylipins have anti-inflammatory prop-
erties and are involved in the resolution of liver disease. 
Administration of LXA4 reduces hepatic immune cell infiltra-
tion as well as systemic inflammatory cytokine levels, thus 
attenuating alcoholic steatohepatitis in both wild-type and 
12/15-LOX-deficient mice.159 Treatment with 14,15-EET pro-
tects HepG2 cells from PA-induced inflammation and oxida-
tive stress, while genetic disruption of Ephx2, which encodes 
soluble epoxide hydrolase, restores EET levels and attenu-
ates liver injury.160 Notably, combined intervention with a 
high ω-3 fatty acid diet and administration of the selective 
s-EH inhibitor TPPU (1-trifluoromethoxyphenyl-3-(1-prop-
ionylpiperidin-4-yl) urea) has been validated to attenuate 
CCl4-induced liver fibrosis.161 Moreover, NASH is accompa-
nied by suppressed CYP epoxygenase activity and reduced 
hepatic and circulating EET levels, while EET administration 
promotes liver regeneration.162 Preclinical data have further 
indicated that EET depletion by CYP epoxygenase suppres-
sion promotes NAFLD development, and EET augmentation 
attenuates steatosis, NASH, and fibrosis.160,163,164 Thus, spe-
cific eicosanoids, such as LXA4, PGE2, and EETs, demonstrate 
hepatoprotective properties and represent potential treat-
ment options for mitigating NAFLD progression. Potential 
therapeutic targets based on oxylipin metabolism and their 
corresponding oxidases in liver disease were summarized in 
Figure 2B.

Future prospects
The pathogenesis of ESLD, encompassing AD and ACLF, is 
highly complex, with significant heterogeneity among patient 
populations. Current research on oxylipins in ESLD remains 
limited and is largely derived from European cohorts with 
DC.58,59 Comprehensive lipidomic or metabolomic studies are 
still needed to portray oxylipin dysregulation in other ESLD 
cohorts, such as those with viral hepatitis. Although existing 
cohort studies suggest a strong correlation between bioac-
tive lipids and disease severity and progression in AD-ACLF, 
key influencing factors, such as chronic hepatitis background, 
immune and metabolic status (e.g., obesity, diabetes), and 
acute insults (e.g., viral activation, infection, drug toxicity) 
that induce alterations in bioactive lipids, have not been ful-
ly explored. Future research requires more detailed clinical 
subgroup analyses to characterize the alterations in bioactive 
lipids in complex ESLD scenarios.

From a mechanistic perspective, current research into the 
interplay between oxylipins and the immune system in ESLD 
has predominantly focused on macrophages, with a notable 
lack of systematic studies on other crucial immune popu-
lations, including liver-resident T cell populations, granulo-
cytes, and peripheral immune cells. Furthermore, the synthe-
sis of carrier proteins, such as apolipoproteins and albumin, 
which are vital for oxylipin transport, is significantly impaired 
in ESLD. How this deficiency affects oxylipin-mediated sys-
temic inflammation represents an important yet understud-
ied area. Additionally, intestinal microbial dysbiosis is a key 
driver of ESLD progression, yet few studies have reported its 
impact on host oxylipin metabolism. Thus, future investiga-
tions are warranted to explore how specific microbial strains 
interact with host enzymes (e.g., COX, LOX) to modulate 
oxylipin biosynthesis, and to unravel the molecular mecha-
nisms linking particular microbial taxa to oxylipin metabolism 
and immune signaling. Such efforts can lay the foundation 
for developing precision therapies for ESLD based on oxylipin 
and gut microbiota profiles.

Finally, due to analytical limitations, the study of a wide 

variety of bioactive lipids primarily relies on lipidomics meth-
ods using liquid chromatography-mass spectrometry tech-
niques. While non-targeted omics approaches provide a 
comprehensive profile of lipids, the identification of lipid mol-
ecules is not sufficiently accurate. Conversely, targeted omics 
methods, which offer reliable qualitative and quantitative in-
formation, are limited to a few categories of lipids due to the 
constraints of the existing lipid molecular libraries. Therefore, 
the development of new lipid quantification and in vivo track-
ing methods is essential for advancing the systematic study 
of oxylipins in liver diseases.

Conclusions
While the immunoregulatory roles of oxylipins and their con-
tributions to liver injury in ESLD are increasingly recognized, 
their cellular sources and precise mechanisms of action re-
main incompletely characterized. Significant challenges per-
sist, including patient heterogeneity, insufficient mechanistic 
insight beyond macrophage-centric views, and technical limi-
tations in lipidomic analyses. Future research must prioritize 
multi-cohort validation, detailed clinical subtyping, expanded 
immune cell analyses, and the integration of host–microbe 
metabolic interactions. Overcoming these hurdles will be es-
sential for developing oxylipin-based therapeutic and pre-
ventive strategies for ESLD.
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